"""Functions to load sample data."""importpandasaspdfrompygmt.srcimportwhich
[docs]defload_japan_quakes():""" Load a table of earthquakes around Japan as a pandas.DataFrame. Data is from the NOAA NGDC database. This is the ``@tut_quakes.ngdc`` dataset used in the GMT tutorials. The data are downloaded to a cache directory (usually ``~/.gmt/cache``) the first time you invoke this function. Afterwards, it will load the data from the cache. So you'll need an internet connection the first time around. Returns ------- data : pandas.DataFrame The data table. Columns are year, month, day, latitude, longitude, depth (in km), and magnitude of the earthquakes. """fname=which("@tut_quakes.ngdc",download="c")data=pd.read_csv(fname,header=1,sep=r"\s+")data.columns=["year","month","day","latitude","longitude","depth_km","magnitude",]returndata
[docs]defload_ocean_ridge_points():""" Load a table of ocean ridge points for the entire world as a pandas.DataFrame. This is the ``@ridge.txt`` dataset used in the GMT tutorials. The data are downloaded to a cache directory (usually ``~/.gmt/cache``) the first time you invoke this function. Afterwards, it will load the data from the cache. So you'll need an internet connection the first time around. Returns ------- data : pandas.DataFrame The data table. Columns are longitude and latitude. """fname=which("@ridge.txt",download="c")data=pd.read_csv(fname,sep=r"\s+",names=["longitude","latitude"],skiprows=1,comment=">")returndata
[docs]defload_sample_bathymetry():""" Load a table of ship observations of bathymetry off Baja California as a pandas.DataFrame. This is the ``@tut_ship.xyz`` dataset used in the GMT tutorials. The data are downloaded to a cache directory (usually ``~/.gmt/cache``) the first time you invoke this function. Afterwards, it will load the data from the cache. So you'll need an internet connection the first time around. Returns ------- data : pandas.DataFrame The data table. Columns are longitude, latitude, and bathymetry. """fname=which("@tut_ship.xyz",download="c")data=pd.read_csv(fname,sep="\t",header=None,names=["longitude","latitude","bathymetry"])returndata
[docs]defload_usgs_quakes():""" Load a table of global earthquakes form the USGS as a pandas.DataFrame. This is the ``@usgs_quakes_22.txt`` dataset used in the GMT tutorials. The data are downloaded to a cache directory (usually ``~/.gmt/cache``) the first time you invoke this function. Afterwards, it will load the data from the cache. So you'll need an internet connection the first time around. Returns ------- data : pandas.DataFrame The data table. Use ``print(data.describe())`` to see the available columns. """fname=which("@usgs_quakes_22.txt",download="c")data=pd.read_csv(fname)returndata
[docs]defload_fractures_compilation():""" Load a table of fracture lengths and azimuths as hypothetically digitized from geological maps as a pandas.DataFrame. This is the ``@fractures_06.txt`` dataset used in the GMT tutorials. The data are downloaded to a cache directory (usually ``~/.gmt/cache``) the first time you invoke this function. Afterwards, it will load the data from the cache. So you'll need an internet connection the first time around. Returns ------- data : pandas.DataFrame The data table. Use ``print(data.describe())`` to see the available columns. """fname=which("@fractures_06.txt",download="c")data=pd.read_csv(fname,header=None,sep=r"\s+",names=["azimuth","length"])returndata[["length","azimuth"]]
[docs]defload_hotspots():""" Load a table with the locations, names, and suggested symbol sizes of hotspots. This is the ``@hotspots.txt`` dataset used in the GMT tutorials, with data from Mueller, Royer, and Lawver, 1993, Geology, vol. 21, pp. 275-278. The main 5 hotspots used by Doubrovine et al. [2012] have symbol sizes twice the size of all other hotspots. The data are downloaded to a cache directory (usually ``~/.gmt/cache``) the first time you invoke this function. Afterwards, it will load the data from the cache. So you'll need an internet connection the first time around. Returns ------- data : pandas.DataFrame The data table with columns "longitude", "latitude", "symbol_size", and "placename". """fname=which("@hotspots.txt",download="c")columns=["longitude","latitude","symbol_size","place_name"]data=pd.read_table(filepath_or_buffer=fname,sep="\t",skiprows=3,names=columns)returndata